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INERTIAL EFFECTS IN TRANSPORT OF RADIOACTIVE WASTE

THROUGH ENGINEERED BARRIERS

C. L. CARNAHAN
Earth Sciences Division, Lawrence Berkoloy Laboratory,
University of California, Berkeley, California 94720

ABSTRACT

Agditiyn aﬁf an inertial term to the constitutive {lelat on for
mass fux leads to a mass transport equation which is er-

bolic and describes propagation of a distorted wave with a fnite
velocity. This approach eliminates the “instantaneous ropaga-
tion Paradox" inherent in parabolic transport equations based on
Fick's law. Analytical solutions of the wave transport equation
have been derived and have the properties that the leading edge
of a solute front propagates at a finite, predictable velocity and
is truncated by a step function which decreases in magnitude
exponentially with time. The inertial effects on computed solute
fronts are most evident near the leading edge, and have potential
significance in the prediction of engineered barrier performance. -

INTRODUCTION

Mathematical models are being used increasingly to predict movement of radioac-
tive waste through engineered barriers and to interpret results of transport experi-
ments with barrier materials. Model predictions of transport in engineered barriers
may be used as input to models of transport in the far fleid. Because these models will
be used as indicators of engineered barrier performance, and eventually in support
of lic_.':‘nse applications, it is important that the models be as physically realistic as’
possible.

quenléee: us examine the conceptual basis of many current models, and its conse-

TRANSPORT EQUATION WITHOUT INERTIA

Mathematical models used to predict the performance of proposed engineered
barrier materials traditionally have been comstructed by combining the mass conser-
vation equation with a constitutive relation describing the dependence of mass flux
on forces acting on the system. For the simplest kind of transport model describing
diffusion in one dimension, the mass conservation equation has the form ,

oc | 8y
3?+ 8z 0 (1)

where C is the concentration of diffusing material, j is the diffusive mass flux, z is
distance from the origin, and ¢ is time. .



Constitutive relations have taken a variety of forms; the usual practice in mass
transport is to ignore thermodynamic couplings to other transport processes, to
approximate chemical potential gradients by concentration gradients, and to write
the constitutive relation for a single diffusing species in the form of Fick's law. In

this form, the diffusive mass flux is stated to be proportional to the negative gradient -

of concentration through a transport coefficient, D, which in a fluid-saturated porous
matrix is the coefficient of hydrodynamic dispersion. Thus,

. ac
J =_-D3;- _ 2)

Combination of (1) and (2) results in a parabolic partial differential equation of
transport, the “diffusion equation”, which in this case has the form

82Cc 8C
D'—az2 - Ft— = 0. (3)

When (3) is solved with the initial and boundary conditions

C(z,00=0, C(0,t)=Cy, lim C(z,t)=0 (4)
=00

the result is

Cl(z,t) = C erfc( ) (5)
’ 2vDt

where erfc(z) represents the complementary error function with argument z. This
procedure is subject to criticism on two grounds.

First, the simple phenomenological relation embodied in Fick's law was deduced
from consideration of systems in steady states, and does not account for transient,
inertial effects. Its application to systems showing explicit temporal dependence is
questionable. '

Second, solutions of the diffusion equation have the property that a material or
thermal anomaly must be propagated with infinite velocity, i.e., the velocity of a
concentration isopleth becomes large without bound as either time or concentration
approaches zero. This can be shown for the present example by explicit derivation of
the velocity of propagation, vc, of an isopleth of given concentration C:

vC=E =—-(2-C'—/_0;t.a£' (6)

Examination of (5) and (6) shows that vc goes to infinity as either t or C approaches
zero. This non-physical result (the “instantaneous propagation paradox”) has received
attention in recent years in the literature of heat transport [1,2,3,4]. We are led to
inquire how we can avoid this paradox while retaining features of our transport models
that correspond to our observational experience.
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ADVECTIVE-DISPERSIVE TRANSPORT EQUATION WITH INERTIA

The paradox can be resolved by careful consideration of inertial processes (i.e.,
temporal changes of forces and fluxes) in a transporting system. Thus, Bearman and
Kirkwood [5] and Bearman [6,7] used a statistical mechanical analysis of momentum
balance, and Machlup and Onsager (8], Luikov [9], Gyarmati [10] and others used
the thermodynamics of irreversible processes to derive constitutive relations including
inertial terms explicitly.

The simplest form of an inertial term is the negative time derivative of a diffusive
flux multiplied by a characteristic relaxation time, 7; this term is added to the diffusive
term in Fick’s law to give the complete constitutive relation for s given flux; thus,

_ ac &)
1= Daz T&t M

The result of combining such a relation with the mass conservation equation is a
hyperbolic partial differential equation of transport describing a propagated wave with -
distortion caused by dissipative processes.

For example, the mass conservation equation for advective-dispersive transport
in a one-dimensional system with fluid velocity equal to v is

ac ac | 85 ,
o TV T = ®
Combining (7) and (8) gives the hyperbolic partial differential equation
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where .
Y(z,t) = C(z,t) or j(z,t).

To solve (9), we impose the initial conditions

-0 . 5 - 8C(z,0) _ 8j(z,0) _ .
CE0=0"Jz0=0 —g==0 =5==0 (0

The inner boundary condition can specify either a constant concentration, Co,

C(O’ t) = CO) (11)
or a constant flux, Jo, . .
vC(0,8) + j(0,t) = J,. (12)
In either case, the outer boundary conditions are:

lim C(z,t)=0, lim j(z,t)=0. (13)
T =>0C

Z =00



The solutions of (9) to (13) have been obtained by an integral transform method.
It is convenient to express the solutions in terms of the following reduced variables:

vz v2t v2r
6_'51 =75 ﬁ=3“,
a=3VEFi-3VB  ne=46/5
A N Tt
n= ﬂ(ﬁ+4)(ﬂ+ﬂw + £§), al—ﬁ(ﬁ+4)A2’
r2=%l 82=A481)

z2= 2\/ri 81 = 2\/rasq.
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For the constant-concentration boundary condition, the solutions are:

co = VUin,s)+ [1 = J(s2, r2)] exp(€)} H(n — 1),

J ) [_(ﬂ+2)n
vCo {A,/'ﬁexp B+4)

(14)

5 _f_ 4] - J(rz-,-sz)exp(f)}H(n - le)v,

where

(15)

J(r,s) = exp(—s) /'exp(—u)10(2\/ﬁ) du, (16)

In(2) is a modified Bessel function of order n with argument 2, and H(n) is the unit
step function defined by:

_JO0 forn<O
H(”)—{l forn >0-

(17)
vC

For the constant-flux boundary condition, the solutions are:
Jo

H(n - nm){f(rl,sl)'— 01(6,7)J (13, 52) exp(€)

(18)
+[92(€, mio(2) + %\/ﬂ(ﬂ -+ 4)211(2)] exp [—- ,(6?;—}-221'; + £ ]},

p+4



o H(n - n.,){[l + 91(&, 7))J(r2, 82) exp(£)
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(19)

where

VB, An+&/B

&) =148+Q0Q+ P +n, 92(&,m) = A m

(20)

In these solutions, the variable n,, represents the time when the solute wave front
reaches an observer located at a position represented by £; during the time period
represented by n < 7, the observer sees nothing. Thus the solute front moves at a
constant, finite velocity; it can be shown that this propagation velocity, vy, is given .

by:

Vo = 2v . © (1)

VB(vFFi- v3)

Numerical values of the solutions given by (14) to (20) have been computed for
a variety of values of transport properties (including the inertial relaxation time).
Figures 1 and 2 show profiles of advective fluxes (effectively, concentrations) and
diffusive fluxes at an instant of time, ¢, as a function of distance, z, from the origin
of a semi-infinite, one-dimensional space. Both figures show results computed for ¢

~ equal to 0.2 year, advective velocity, v, equal to-1 meter/year, and the coefficient of

hydrodynamic dispersion, D, equal to 0.2 meter?/year. In each case, the inner boun-

dary condition was a constant total (advective plus dispersive) flux, Jo mole/(meter?
year), at the origin. In Figure 1, the ordinate is the dimensionless ratio of the advec-

tive flux, vC, where C is the concentration of solute in mole/meter®, to the boundary

- flux, Jy. In Figure 2, the ordinate is the dimensionless ratio of the dispersive flux, 7,

to the boundary flux, Jo. Note that the dispersive flux is composed of two terms: the
usual “Fickian” flux plus the inertial term. Graphs of inertial solutions are shown for
two values of the relaxzation time, 7, and their corresponding values of propagation
velocity, vy; corresponding solutions of the inertia-less transport equation (7 = 0)
are also shown for comparison.

PROPERTIES OF THE SOLUTIONS
Several propemes of the solutions obtained, as 1llustrated in Figures 1 and 2, are

interesting in the context of the nuclear waste dlsposal problem:

1. The leading edge of a solute front propagates at a finite velocity dependent
on the relaxation time, the dispersion coefficient, and the mean advective
velocity of fluid flow. In the limit as the relaxation time goes to zero, the



velocity of propagation increases without bound and the wave solution ap-
?roaches the diffusion solution. Conversely, as the relaxation time increases
I an advective system, the velocity of propagation approaches the advective
velocity, and the wave solution approaches a distortionless translation of the
initial material anomaly.

3. The leading edge of a solute front is truncated by a step function which
decreases in magnitude exponentially with time.

3. Inertial effects are most evident near the leading edge of the solute front, but

as time becomes large relative to the time of arrival of the leading edge at

" a given location the wave solution approaches the diffusion solution; i.e., the
mass flux becomes “Fickian”.

ESTIMATION OF THE RELAXATION TIME

Estimation of values of the relaxation time, 7, has proven to be very difficult.
Chu and Sposito [11] have discussed the physical meauiug of 7 and have indicated
how 7 can be estimated from the appropriate experimental data. However, such data
are very scarce; indeed, no experiments directed specifically toward estimating 7 have
been reported. Chu and Sposito [11], using other data, estimated a value of the order
of 10* seconds (3 x 10—* year) for sandy soils. This value is two to three orders of
magnitude lower than the values used in the calculations shown in Figures 1 and 2,
and it is clear that the inertial effect would be insignificant at this level. However, due
to the nature of the data used by Chu and Sposito [11), their estimate is not precise
and is more likely too low than too high. _

A peed for further research exists in two areas: (1) acquisition of data from
- appropriately designed experiments to more precisely deflne the magnitude of the
inertial effect in engineered barrier materials, and (2) further development of the
fundamental concepts underlying the theory of solute transport in porous media.

SUMMARY

In summary, it is evident that model calculations of breakthrough curves of
radionuclides transported through engineered barriers could be erroneous near the
leading edge if the inertial etffect were sutficiently large. Conversely, theoretical inter-
pretation of the results of laboratory measurements or of field monitoring experiments
would be adversely affected by an incorrect choice of transport model. Because of a
lack of data needed for precise evaluation of the inertial parameter, 7, considerable
uncertainty exists about the significance of inertial effects in engineered barriers.
However, it is clear that inclusion of inertial effects in mass transport provides, in
principle, an improved physical basis for the evaluation of barrier performance.
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Fig. 1. Advective flux for flux boundary condition.
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'Fig. 2. Diffusive flux for flux boundary condition.



This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.




TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

S



